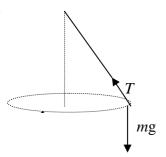
1.



- (a)
- $T\cos 60^{\circ} = mg \Rightarrow T = 2mg *$
- M1A1

(1)

B1

Attempt at $r = L\sin 60^{\circ}$

[Omission of *m* is M0]

M1

 $(\leftrightarrow) T \sin 60^{\circ} = mr\omega^2$

 $(T \sin 60^\circ = m L \sin 60^\circ \omega^2)$ $\omega = \sqrt{\frac{2g}{r}}$

- **A**1 **(4)**
- (c) Applying Hooke's Law: $2mg = \frac{\lambda}{(\frac{3}{5}L)} (L \frac{2}{5}L)$; M1;A1 (2)

[L in denominator is M0]

[7]

(a) Integration of $-4e^{-2t}$ w.r.t. t to give $v = 2e^{-2t}$ (+c) 2.

(b)

B1

Using initial conditions to find c (-1) or $v-1=[f(t)]_0^t$

M1

$$v = 2e^{-2t} - 1 \text{ ms}^{-1}$$

A1 **(3)**

(b) Integrating v w.r.t t; $x = -e^{-2t} - t (+c)$

M1;A1√

Using t = 0, x = 0 and finding value for c (c = 1)

M1

Finding *t* when v = 0;

 $t = \frac{1}{2} \ln 2$ or equiv., 0.347

M1;A1√

[both f.t. marks dependent on v of form $ae^{-2t} \pm b$]

$$x = \frac{1}{2} (1 - \ln 2) \text{ m or } 0.153 \text{ m(awrt)}$$

A1 **(6)** [9]

[For A1, exact form must be two termed answer]

3. (a)
$$F = \frac{k}{x^2}$$
 [k may be seen as Gm_1m_2 , for example] M1

Equating
$$F$$
 to mg at $\mathbf{x} = \mathbf{R}$, $[mg = \frac{k}{R^2}]$

Convincing completion
$$[k = mgR^2]$$
 to give $F = \frac{mgR^2}{x^2}$ * A1 (3)

M1A1

M1A1

[10]

[Note: r may be used instead of x throughout, then $r \rightarrow x$ at end.]

(b) Equation of motion:
$$(m)a = (-)\frac{(m)gR^2}{x^2}$$
; $(m)v\frac{dv}{dx} = -\frac{(m)gR^2}{x^2}$ M1;M1

Integrating:
$$\sqrt{2} v^2 = \frac{gR^2}{x}$$
 (+c) or equivalent

[S.C: Allow $A1\sqrt{if}$ A0 earlier due to "+" only]

Use of
$$v^2 = \frac{3gR}{2}$$
, $x = R$ to find c [$c = -\frac{1}{4}gR$] or use in def. int. M1

[Using
$$x = 0$$
 is M0]
$$[v^2 = \frac{2gR^2}{x} - \frac{gR}{2}]$$

Substituting
$$x = 3R$$
 and finding V ; $V = \sqrt{\frac{gR}{6}}$ M1;A1 (7)

[Using
$$x = 2R$$
 is M0]

Alternative in
$$(b)$$

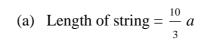
Work/energy (-)
$$\int_{a}^{a} \frac{mgR^{2}}{x^{2}} dx = \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}$$
 M1;M1

Integrating:
$$\left[\frac{mgR^2}{x} - \frac{mgR^2}{R}\right] = \frac{1}{2}mv^2 - \frac{1}{2}m\frac{3gR}{2}$$
 M1A1M1

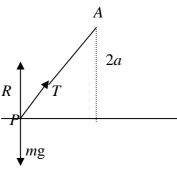
Final 2 marks as scheme

[Conservation of energy scores 0]

4.



B1



$$EPE = \frac{\frac{1}{2} mg}{2a} (L - a)^2$$

M1

$$= \frac{49}{36} mga$$

A1 (3)

(b) Energy equation:
$$\frac{1}{2}mv^2 + \frac{\frac{1}{2}mg}{2a}a^2 = (\frac{49}{36}mga)_C$$

M1A1☆

$$v = \frac{2}{3} \sqrt{5ga}$$
 or equivalent

A1 (3)

M1A1

(c) When string at angle
$$\theta$$
 to horizontal, length of string = $\frac{2a}{\sin \theta}$

$$\Rightarrow$$
 Vert. Comp. of T , $T_{V} = T \sin \theta = \frac{mg}{2a} (\frac{2a}{\sin \theta} - a) \sin \theta$

 $= \frac{mg}{2}(2 - \sin\theta)$

$$(\updownarrow)$$
 $R + T_V = mg$ and find $R = ...$

M1

A1

$$R = mg - \frac{mg}{2}(2 - \sin \theta) = \frac{mg}{2}\sin \theta$$

A1 (5)

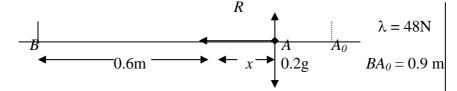
$$\Rightarrow R > 0$$
 (as $\sin \theta > 0$), so stays on table

[Alternative final 3 marks: As θ increases so T_V decreases M1

Initial T_V (string at β to hor.) = $\frac{7}{10}mg$ A1

$$\Rightarrow T_{\rm V} \le \frac{7}{10} mg < mg$$
, so stays on table A1] [11]

5. (a)



Applying Hooke's Law correctly: e.g.
$$T = \frac{48x}{0.6}$$

M1

Equation of motion: (-)
$$T = 0.2 \ddot{x}$$

M1

Correct equation of motion: e.g.
$$-\frac{48x}{0.6} = 0.2 \ddot{x}$$

A1

Writing in form
$$\ddot{x} = -\omega^2 x$$
, and stating motion is SHM

A1√

Period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{20} = \frac{\pi}{10}$$
 (no incorrect working seen)

A1 (5)

[If measure x from B or A, final 2 marks only available if equation of motion is reduced to $\ddot{X} = -\omega^2 X$]

(b) max
$$v = aw$$
 with values substituted; = 0.3 x 20 = 6 ms⁻¹

M1A1(2)

(c) Using
$$x = 0.3\cos 20t$$
 or $x = 0.3\sin 20T$

M1

Using
$$x = 0.15$$
 to give either $\cos 20t = \frac{1}{2}$ or $\sin 20T = \frac{1}{2}$

M1

Either
$$t = \frac{\pi}{60}$$
, $\frac{5\pi}{60}$ or $T = \frac{\pi}{120}$

A1

Complete method for time:

$$t_2 - t_1$$
, or $\frac{\pi}{10} - 2t_1$, or $2(\frac{\pi}{40} + T)$

M1

Time =
$$\frac{\pi}{15}$$
 s (must be in terms of π)

A1 (5)

[12]

6. (a) Cylinder

Hemisphere

Masses

$$(\rho)\pi(2a)^2(\frac{3}{2}a)$$
 $(\rho)\frac{2}{3}\pi a^3$ $(\rho)(\frac{16}{3}\pi a^3)$

$$(\rho)^{\frac{2}{3}}\pi a^3$$

M1A1

$$[6\pi a^3]$$
 [18]

[16]

S

Distance of

 $\frac{1}{8} a$

$$\frac{3}{8} a$$

 \bar{x}

B1B1

CM from O

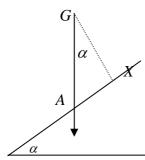
Moments equation: $6 \pi a^3 (\sqrt[3]{4} a) - \frac{2}{3} \pi a^3 (\frac{3}{8} a) = \frac{16}{3} \pi a^3 \bar{x}$

M1

$$\overline{x} = \frac{51}{64}a$$

A1 **(6)**

(b)



G above "A" seen or implied or $mg \sin \alpha (GX) = mg \cos \alpha (AX)$ M1

$$\tan \alpha = \frac{AX}{XG} = \frac{2a}{\frac{3}{2}a - \bar{x}}$$

M1

$$[GX = \frac{3}{2}a - \frac{51}{64}a = \frac{45}{64}a, \tan \alpha = \frac{128}{45}]$$
 $\alpha = 70.6^{\circ}$

A1 (3)

(c) Finding F and R: $R = mg \cos \beta$, $F = mg \sin \beta$

M1

Using $F = \mu R$ and finding $\tan \beta$ [= 0.8]

M1

$$\beta = 38.7^{\circ}$$

A1 **(3)**

[12]

7. (a) Energy:
$$\frac{1}{2} mv^2 - \frac{1}{2} mu^2 = mga \sin \theta$$

. 1 (2)

M1

$$v^2 = \frac{3}{2}ga + 2ga\sin\theta$$

A1 (2)

(b) Radial equation:
$$T - mg \sin \theta = m \frac{v^2}{a}$$

M1A1

$$T = \frac{3mg}{2}(1 + 2\sin\theta) \text{ any form}$$

A1☆ (3)

(c) Setting
$$T = 0$$
 and solving trig. equation; $(\sin \theta = -\frac{1}{2}) \Rightarrow \theta = 210^{\circ} *$

M1;A1(2)

(d) Setting
$$v = 0$$
 in (a) and solving for θ

M1

$$\sin \theta = -\frac{3}{4}$$
 so not complete circle

A1 (2)

OR Substituting $\theta = 270^{\circ}$ in (a); $v^2 < 0$ so not possible to complete

(e) No change in PE
$$\Rightarrow$$
 no change in KE (Cof E) so $v = u$

B1 **(1)**

(f) When string becomes slack,
$$V^2 = \frac{1}{2} ga \left[\sin \theta = -\frac{1}{2} in (a) \right]$$

B1☆

Using fact that horizontal component of velocity is unchanged

M1

$$\sqrt{\frac{ga}{2}} \cos 60^{\circ} = \sqrt{\frac{3ga}{2}} \cos \phi$$

$$\cos \phi = \sqrt{\frac{1}{12}} \Rightarrow \phi = 73.2^{\circ}$$

M1A1 (4)

[14]